Biology of aggression Aggression is directed to and often originates from outside stimuli, but has a very distinct internal character. Using various techniques and experiments, scientists have been able to explore the relationships between various parts of the body and aggression.

Aggression in the brain Many researchers focus on the brain to explain aggression. The areas involved in aggression in mammals include the amygdala, hypothalamus, prefrontal cortex, cingulate cortex, hippocampus, septal nuclei, and periaqueductal gray of the midbrain. Because of the difficulties in determining the intentions of animals, aggression is defined in neuroscience research as behavior directed at an object or animal which results in damage or harm to that object or animal.

The Hipotalamus and periaqueductal grey of the midbrain are the most critical areas controlling aggression in mammals, as shown in studies on cats, rats, and monkeys. These brain areas control the expression of all the behavioral and autonomic components of aggression in these species, including vocalization. They have direct connections with both the brainstem nuclei controlling these functions and areas such as the amygdala and prefrontal cortex.

Electrical stimulation of the hypothalamus causes aggressive behaviorthe hypothalamus expresses receptors that help determine aggression levels based on their interactions with the neurotransmitters serotonin and vasopressin.

The amygdala is also critically involved in aggression. Stimulation of the amygdala results in augmented aggressive behavior in hamsters, while lesions of an evolutionary homologous area in the lizard greatly reduce competitive drive and aggression(Bauman et al. 2006). Several experiments in attack-primed Syrian Golden Hamsters support the claim of the amygdala being involved in control of aggression. Using expression of as a neuroanatomically localized marker of activity, the neural circuitry involved in the state of “attack readiness” in attack primed hamsters was studied. The results showed that certain structures of the amygdala were involved in aggressiveness: the medial nucleus and the cortical nuclei showed distinct differences in involvement as compared to other structures such as the lateral and basolateral nuclei and central nucleus of the amygdala, which were not associated with any substantial changes in aggressiveness. In addition, c-fos expression was found most clearly in the most dorsal and caudal aspects of the corticomedial amygdala (CMA). In the same study, it was also shown that lesions of the CMA significantly reduced the number of aggressive behaviors. Eight of eleven subjects failed to attack. Also a correlation between lesion site and attack latency was determined: the more anterior the lesion, the longer mean elapsed time to the aggressive behavior
psicov.blogspot.com